RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. Akad. Nauk SSSR Ser. Mat., 1972 Volume 36, Issue 3, Pages 591–634 (Mi im2315)

This article is cited in 12 papers

Expansion in eigenfunctions of integral operators of convolution on a finite interval with kernels whose Fourier transforms are rational. “Weakly” nonselfadjoint regular kernels

B. V. Pal'tsev


Abstract: A study is made of the asymptotic behavior of the eigenvalues and of expansions in the root vectors of the class of integral operators specified in the title. If some natural conditions, ensuring “regularity” of the asymptotic behavior of the spectrum, are imposed on the kernel, the root vectors form a basis in $L_p(0,T)$ $(1<p<\infty)$ and a Riesz basis in $L_2(0,T)$.

UDC: 517.43

MSC: Primary 45C05, 47G05, 47A70, 45M05; Secondary 46B15

Received: 05.03.1971


 English version:
Mathematics of the USSR-Izvestiya, 1972, 6:3, 587–630

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026