RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 1999 Volume 63, Issue 1, Pages 61–76 (Mi im228)

This article is cited in 16 papers

Renewal equations on the semi-axis

N. B. Engibaryan

Byurakan Astrophysical Observatory, National Academy of Sciences of Armenia

Abstract: We consider the renewal equation
$$ \varphi(x)=g(x)+\int_0^x\varphi(x-t)\,dF(t), \qquad g\in L_1(0;\infty), $$
where $F$ is the distribution function of a non-negative random variable. If $F$ has a non-trivial absolutely continuous component or is a distribution of absolutely continuous type, then we prove that the solution of the renewal equation can be written as follows:
$$ \varphi=\varphi_1+\varphi_2+\biggl[\int_0^{\infty}x\,dF(x)\biggr]^{-1}\int_0^{\infty}g(x)\,dt, $$
where $\varphi_1\in L_1(0;\infty)$, $\varphi_2\in C[0;\infty)$, and $\varphi_2(+\infty)=0$
If $g$ is bounded and $g(+\infty)=0$, then $\varphi_1(+\infty)=0$.
The proof is based on the structural factorization of the renewal equation into absolutely continuous, discrete, and singular components.

MSC: 60K05, 45D05, 45E10, 47B35, 47A68, 45M05

Received: 18.02.1997

DOI: 10.4213/im228


 English version:
Izvestiya: Mathematics, 1999, 63:1, 57–71

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026