RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. Akad. Nauk SSSR Ser. Mat., 1973 Volume 37, Issue 3, Pages 502–515 (Mi im2276)

Cyclic modules for a complex semisimple Lie group

D. P. Zhelobenko


Abstract: We consider cyclic modules generated by elementary representations of a complex semisimple Lie group. The main result is a theorem on cyclicity (Theorem 3 of § 4), according to which the elementary representations are generated by cyclic vectors of a special type with respect to a maximal compact subgroup. We give a classification of completely irreducible representations in terms of the characteristic (highest and lowest) weights.

UDC: 513.88

MSC: Primary 22E45, 22E60; Secondary 17B10

Received: 09.10.1972


 English version:
Mathematics of the USSR-Izvestiya, 1973, 7:3, 497–510

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026