RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 1999 Volume 63, Issue 1, Pages 41–60 (Mi im227)

This article is cited in 28 papers

On Walsh series with monotone coefficients

G. G. Gevorkyana, K. A. Navasardyanb

a Institute of Mathematics, National Academy of Sciences of Armenia
b Yerevan State University

Abstract: We prove that if $a_n\downarrow 0$ and $\sum_{n=0}^\infty a_n^2=+\infty$ then the Walsh series $\sum_{n=0}^\infty a_nW_n(x)$ has the following property. For any measurable function $f(x)$ which is finite almost everywhere, there are numbers $\delta_n=0,\pm 1$ such that the series $\sum_{n=0}^\infty\delta_na_nW_n(x)$ converges to $f(x)$ almost everywhere. This assertion complements and strengthens previously known results about universal Walsh series and Walsh null-series.

MSC: 42C10

Received: 30.09.1997

DOI: 10.4213/im227


 English version:
Izvestiya: Mathematics, 1999, 63:1, 37–55

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026