RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. Akad. Nauk SSSR Ser. Mat., 1973 Volume 37, Issue 2, Pages 422–436 (Mi im2255)

This article is cited in 6 papers

Generalization of an asymptotic formula of V. A. Marchenko for spectral functions of a second-order boundary value problem

I. S. Kats


Abstract: It is established that the spectral functions $\tau(\lambda)$ of the second-order boundary value problem
\begin{gather*} -\frac d{dM(x)}\biggl[y^-(x)-\int_{-0}^{x-0}y(s)\,dQ(s)\biggr]-\lambda y(x)=0\qquad(0\le x<L),\\ y^-(0)=m,\qquad y(0)=n, \end{gather*}
possess power asymptotics $\tau(\lambda)\sim C\lambda^\nu$ as $\lambda\uparrow+\infty$, when the function $M(x)$ possesses power asymptotics as $x\downarrow0$. A partial converse of this fact is also obtained.

UDC: 517.9

MSC: 34B25

Received: 30.12.1971


 English version:
Mathematics of the USSR-Izvestiya, 1973, 7:2, 424–438

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026