RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. Akad. Nauk SSSR Ser. Mat., 1969 Volume 33, Issue 6, Pages 1373–1398 (Mi im2242)

This article is cited in 3 papers

On monotone solutions of nonlinear ordinary differential equations of order $n$.

I. T. Kiguradze


Abstract: We establish in this paper existence and uniqueness criteria and study the behavior for $t\to +\infty$ of the solution $u(t)$ of the differential equation $u^{(n)}=f(t,u,u',\dots,u^{(n-1)})$, defined in the interval $(0,+\infty)$ and satisfying the conditions $\lim\limits_{t\to +0}u(t)=u_0$ $(-1)^{k}u^{(k)}(t)\geqslant 0$, for $t>0$ $(k=0,1,\dots,n-1)$.

UDC: 517.9

MSC: 34A12, 34A34, 34C12

Received: 26.11.1968


 English version:
Mathematics of the USSR-Izvestiya, 1969, 3:6, 1293–1317

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026