RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. Akad. Nauk SSSR Ser. Mat., 1969 Volume 33, Issue 5, Pages 1080–1088 (Mi im2192)

This article is cited in 1 paper

Adèles and integral representations

Yu. A. Drozd


Abstract: We apply the technique of adèles to study integral representations belonging to the same genus. We study the stable structure of genera and prove that if $L$ is a representation of a semisimple $Z$-ring such that each direct summand occurs at least twice in the decomposition of $L$ over the field of rational numbers, and if $M$ and $N$ are representations from the genus of $L$, then $M\oplus L^n\simeq N\oplus L^n$ implies that $M\simeq N$. For representations of a semisimple $Z$-ring $\Lambda$ we give a bound for the number of representations in a genus; the bound depends only on the rational algebra $\widetilde\Lambda=\Lambda\otimes Q$ and on the exponent of the group $\Lambda'/\lambda$ , where $\Lambda'$ is a maximal overring of $\Lambda$.

UDC: 519.49

MSC: 20C10, 11S23, 11R56

Received: 24.06.1968


 English version:
Mathematics of the USSR-Izvestiya, 1969, 3:5, 1019–1026

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026