RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. Akad. Nauk SSSR Ser. Mat., 1969 Volume 33, Issue 5, Pages 974–1025 (Mi im2189)

This article is cited in 2 papers

The Castelnuovo–Enriques contraction theorem for arbitrary dimension

B. G. Moishezon


Abstract: In the present article we show that the $n$-dimensional generalization of the Castelnuovo–Enriques theorem concerning exceptional curves of the first kind on algebraic surfaces is valid in the category of minischemes over any algebraically closed field. The following result is deduced as a corollary: for every $n$-dimensional compact complex manifold $Y$ with $n$ algebraically independent meromorphic functions there exists a nonsingular minischeme $V$ over the complex field such that the complex manifold $V_\mathbf C$ canonically corresponding to $V$ coincides with $Y^*$.

UDC: 513.6

MSC: 14J28, 32A20, 32Q55, 14Hxx, 14J50, 14A10

Received: 17.03.1969


 English version:
Mathematics of the USSR-Izvestiya, 1969, 3:5, 917–966

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026