RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. Akad. Nauk SSSR Ser. Mat., 1976 Volume 40, Issue 3, Pages 685–705 (Mi im2159)

This article is cited in 2 papers

Equiconvergence of expansions in a multiple Fourier series and Fourier integral for summation over squares

I. L. Bloshanskii


Abstract: In this work there are constructed a function $f(\overline x)\in L_1([-\pi,\pi]^2)$ such that the difference between the Fourier series expansion and the Fourier integral expansion for summation over squares diverges almost everywhere on $\{[-\pi,\pi]^2\}$, and a function $f(\overline x)\in L_p([-\pi,\pi]^N)$, $p>1$, $N\geqslant2$, for which the difference diverges at a point.
Bibliography: 5 titles.

UDC: 517.5

MSC: Primary 42A92, 42A20; Secondary 40B05

Received: 13.12.1974


 English version:
Mathematics of the USSR-Izvestiya, 1976, 10:3, 652–671

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026