RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. Akad. Nauk SSSR Ser. Mat., 1976 Volume 40, Issue 1, Pages 152–189 (Mi im2104)

This article is cited in 5 papers

On the spectral theory for the Sturm–Liouville equation with operator coefficient

P. A. Mishnaevskii


Abstract: For the Sturm–Liouville equation with an operator coefficient we study selfadjoint Friedrichs extensions in the space $L_2(H(x),(0,\infty),dx)$. Then we use our results to investigate selfadjoint extensions of the Schrödinger operator in $L_2(\Omega)$, where $\Omega$ is a domain with an infinite boundary, using various boundary conditions.
Bibliography: 19 titles.

UDC: 517.43

MSC: Primary 34B25, 47E05, 35J10, 35P25; Secondary 47A20

Received: 30.01.1975


 English version:
Mathematics of the USSR-Izvestiya, 1976, 10:1, 145–180

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026