RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. Akad. Nauk SSSR Ser. Mat., 1975 Volume 39, Issue 5, Pages 1130–1141 (Mi im2082)

This article is cited in 3 papers

On fixed points of generalized linear-fractional transformations

V. A. Khatskevich


Abstract: We study the fixed points of the generalized linear-fractional transformation $F_A$, induced by the plus-operator $A$, of the operator unit ball $\mathscr K_+$ into $\mathscr K_+$. In particular, for a linear-fractional transformation $F_A$ which maps $\mathscr K_+$ into its interior $\mathscr K_+^0$ we prove that if $F_A$ has a fixed point then the latter is unique. If, on the other hand, $F_A$ maps $\mathscr K_+$ onto $\mathscr K_+$, then, provided $F_A$ has a fixed point in $\mathscr K_+^0$, the following alternative is valid:
1) either this is the only fixed point of $F_A$ in $\mathscr K_+$,
2) or $F_A$ has a continuum of fixed points in the interior of $\mathscr K_+$ and at least two fixed points on the boundary $S_+$ of $\mathscr K_+$.
In the intermediate case where $F_A(\mathscr K_+)\ne\mathscr K_+$ but $F_A(\mathscr K_+)\cap S_+\ne\varnothing$ we give an example of a linear-fractional transformation $F_A$ that has two fixed points: one in $\mathscr K_+^0$ and one on $S_+$.
Bibliography: 11 titles.

UDC: 513.88

MSC: Primary 47B50; Secondary 47H10

Received: 14.01.1974


 English version:
Mathematics of the USSR-Izvestiya, 1975, 9:5, 1069–1079

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026