RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. Akad. Nauk SSSR Ser. Mat., 1975 Volume 39, Issue 5, Pages 1093–1129 (Mi im2081)

This article is cited in 3 papers

Poles of pseudo-Riemannian spaces

A. S. Solodovnikov, N. R. Kamyshanskii


Abstract: Two-dimensional complete analytic pseudo-Riemannian spaces $V$ with poles are studied. A pole is a point $p\in V$ with respect to which $V$ admits a one-parameter group of rotations. With each pole is connected a holomorphic function $F_p(z)$ (the complex pole function). Necessary conditions on $F_p(z)$ are established. A number of “existence theorems” are proved: for a given holomorphic function $F(z)$ with certain properties there exists a complete space $V$ with pole $p$ for which the function $F_p(z)$ coincides with $F(z)$.

UDC: 513.78

MSC: 53C20

Received: 01.07.1974


 English version:
Mathematics of the USSR-Izvestiya, 1975, 9:5, 1035–1068

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026