RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. Akad. Nauk SSSR Ser. Mat., 1977 Volume 41, Issue 6, Pages 1348–1387 (Mi im2073)

This article is cited in 6 papers

On the Dirichlet problem for a pseudodifferential equation encountered in the theory of random processes

B. V. Pal'tsev


Abstract: The problem is considered of finding a function $u(t)$ satisfying the equation
\begin{equation} \mathscr F^{-1}[\tilde k(x)\tilde u(x)](t)=f(t)\quad\text{for}\quad t\in\Omega,\qquad\tilde u(x)=\mathscr F[u(t)](x), \end{equation}
and the conditions
\begin{equation} u(t)\equiv0\quad\text{for}\quad t\notin\Omega,\qquad\int_{-\infty}^{+\infty}\tilde k(x)|\tilde u(x)|^2\,dx<\infty, \end{equation}
where $\tilde k(x)$ is a nonnegative measurable function and $\mathscr F$ is the Fourier operator. An existence and uniqueness theorem is proved under quite general assumptions concerning the spectral densities $\tilde k(x)$. Explicit formulas for the solution of problem (1), (2) are obtained in the case when $\Omega$ is an interval $(-T,T)$ and $\tilde k(x)=|x|^\alpha$, $\alpha>0$.
Bibliography: 17 titles.

UDC: 517.9

MSC: Primary 35S15; Secondary 60G25, 62M20

Received: 23.09.1976


 English version:
Mathematics of the USSR-Izvestiya, 1977, 11:6, 1285–1322

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026