RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. Akad. Nauk SSSR Ser. Mat., 1977 Volume 41, Issue 6, Pages 1289–1328 (Mi im2071)

This article is cited in 17 papers

Lack of interpolation of linear operators in spaces of smooth functions

B. S. Mityagin, E. M. Semenov


Abstract: We prove that $C^k(\Omega)$, the space of $k$ times continuously differentiable functions on the closure of a region in a finite-dimensional manifold, is not an interpolation space between $C(\Omega)$ and $C^n(\Omega)$ for $0<k<n$. We find analogous results for the Sobolev–Stein spaces. In the class of spaces $C_\varphi$, defined by the modulus of continuity, we describe all interpolation spaces between $C$ and $C^2$.
Bibliography: 34 titles.

UDC: 513.88

MSC: Primary 43A15, 46E15, 46E35; Secondary 26A15, 32E10, 47G05

Received: 13.07.1976


 English version:
Mathematics of the USSR-Izvestiya, 1977, 11:6, 1229–1266

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026