RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 1998 Volume 62, Issue 3, Pages 155–174 (Mi im206)

This article is cited in 4 papers

Bounded solutions of linear almost periodic differential equations

D. N. Cheban


Abstract: The paper deals with bounded (on $\mathbb R_+$ or $\mathbb R$) solutions of the equation $\dot x=\mathcal A(t)x$ with recurrent (almost periodic) coefficients. We show that the zero solution of this equation is uniformly stable (bistable) if and only if all its solutions and the solutions of its limit equations are bounded on $\mathbb R_+$ ($\mathbb R$). These results are generalizations of the well-known theorem of Cameron–Johnson.

MSC: 34C27, 34C35, 54H20

Received: 18.03.1996
Revised: 30.01.1997

DOI: 10.4213/im206


 English version:
Izvestiya: Mathematics, 1998, 62:3, 581–600

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026