RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. Akad. Nauk SSSR Ser. Mat., 1975 Volume 39, Issue 4, Pages 879–898 (Mi im2057)

This article is cited in 5 papers

On $\omega$-limit sets of a cylindrical cascade

A. B. Krygin


Abstract: Let the transformation
$$ T_{\alpha,f}(x,y)=((x+\alpha)\operatorname{mod}1,y+f(x)), $$
be defined on the cylinder $\mathbf S^1\times\mathbf R$, where $\alpha$ is an irrational number and $f(x)$ is a continuous function on $\mathbf S^1$, with $\int_{\mathbf S^1}f(x)dx=0$. Let $\mathbf L$ be the set of numbers $y$ for which is an $\omega$-limit point for the trajectory of the point $(x_0,y_0)$. In this paper the classification of the sets $\mathbf L$ is carried out and suitable examples are constructed.
Bibliography: 9 items.

UDC: 517.9

MSC: Primary 34C35, 54H20; Secondary 58F99

Received: 30.01.1975


 English version:
Mathematics of the USSR-Izvestiya, 1975, 9:4, 831–849

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026