RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. Akad. Nauk SSSR Ser. Mat., 1978 Volume 42, Issue 6, Pages 1426–1435 (Mi im1980)

On roots of the multiple integration operator in the space of functions analytic in a disk

N. I. Nagnibida


Abstract: Let $A_R$ denote the space of all single-valued functions analytic in the disk $|z|<R$, $0<R\leqslant\infty$, with the topology of compact convergence, and let $J$, $J\cdot=\int_0^z\cdot\,d\xi$, be the integration operator on it. In the paper all continuous linear operators on $A_R$ which satisfy the condition $Y^p=J^p$, where $p$ is a fixed natural number, are found, and it is shown that for each of them there exists a one-to-one bicontinuous mapping $T$ of the space $A_R$ to itself which commutes with $J^p$ and satisfies $YT=TJ$.
Bibliography: 8 titles.

UDC: 517.5

MSC: Primary 47G05; Secondary 46E10, 30H05

Received: 01.12.1977


 English version:
Mathematics of the USSR-Izvestiya, 1979, 13:3, 685–693

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026