RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. Akad. Nauk SSSR Ser. Mat., 1971 Volume 35, Issue 1, Pages 154–184 (Mi im1925)

This article is cited in 10 papers

Integral characteristics of the growth of spectral functions for generalized second order boundary problems with boundary conditions at a regular end

I. S. Kats


Abstract: For the spectral function $\tau(\lambda)$ of the generalized second order boundary problem
\begin{gather*} -\frac d{dM(x)}\biggl[y'_-(x)-\int_{-0}^{x-0}y(s)\,dQ(s)\biggr]-\lambda y(x)=0\qquad(0\leq x<L),\\ y'_-(0)=m,\qquad y(0)=n, \end{gather*}
and for the function $\eta(\lambda)$, which may belong to an extremely large class of positive functions that are nonincreasing on $[1,+\infty)$, the problem of characterizing the growth of the function $\tau(\lambda)$ as $\lambda\uparrow+\infty$ and of the convergence of the integral $\int^{+\infty}\eta(\lambda)\,d\tau(\lambda)$ is connected with the behavior as $x\downarrow0$ of the function $M(x)$.

UDC: 517.9

MSC: Primary 34B25; Secondary 34B15

Received: 25.03.1969


 English version:
Mathematics of the USSR-Izvestiya, 1971, 5:1, 161–191

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026