RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. Akad. Nauk SSSR Ser. Mat., 1971 Volume 35, Issue 1, Pages 93–124 (Mi im1921)

This article is cited in 18 papers

Extreme values of functionals and best approximation on classes of periodic functions

N. P. Korneichuk


Abstract: In this paper, we compute upper bounds for the best approximation by trigonometric polynomials in the metrics $C$ and $L$ on the classes $W^rH_\omega$ of $2\pi$-periodic functions such that $|f^{(r)}(x')-f^{(r)}(x'')|\leqslant\omega(|x'-x''|)$, where $\omega(t)$ is a given convex modulus of continuity. In doing this, we obtain a series of results which explain certain new properties of differentiable functions expressed in terms of rearrangements. Also, we obtain precise estimates for functionals of the form $\int_0^{2\pi}fg\,dx$, where $f\in H_\omega$, and $g$ belongs to a certain class of differentiable functions defined by bounds on the norm of $g$ and its derivatives in $C$ or $L$.

UDC: 517.5

MSC: 42A04, 42A08

Received: 08.06.1970


 English version:
Mathematics of the USSR-Izvestiya, 1971, 5:1, 97–129

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026