RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 1998 Volume 62, Issue 4, Pages 81–136 (Mi im190)

This article is cited in 35 papers

An explicit lower bound for a homogeneous rational linear form in logarithms of algebraic numbers

E. M. Matveev

Moscow State Textile Academy named after A. N. Kosygin

Abstract: In this paper we study linear forms $\Lambda=b_1\ln\alpha_1+\dots+b_n\ln\alpha_n$ with rational integer coefficients $b_j$ ($b_n\ne 0$, $n\geqslant 2$), where the $\alpha_j$ are algebraic numbers satisfying the so-called strong independence condition. In standard notation, we prove an explicit estimate of the form
$$ |\Lambda|>\exp\bigl(-C^nD^{n+2}\Omega\ln\bigl(C^nD^{n+2}\Omega'\bigr)\ln(eB)\bigr). $$
Its novel feature is that it contains no factors of the form $n^n$.

MSC: 11J86, 11J25

Received: 24.07.1996

DOI: 10.4213/im190


 English version:
Izvestiya: Mathematics, 1998, 62:4, 723–772

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026