RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. Akad. Nauk SSSR Ser. Mat., 1977 Volume 41, Issue 4, Pages 752–767 (Mi im1863)

This article is cited in 3 papers

Finite simple groups with Sylow 2-subgroups of order $2^7$

A. S. Kondrat'ev


Abstract: The following theorem is proved in the paper. If a Sylow 2-subgroup $T$ of a finite simple group is of order $2^7$ , then either the nilpotency class of $T$ is not greater than 2 or the sectional 2-rank of $T$ does not exceed 4. This theorem and known classification results lead to a list of all finite simple groups with Sylow 2-subgroups of order $\leqslant2^7$.
Bibliography: 22 titles.

UDC: 519.44

MSC: 20D05, 20D20

Received: 14.04.1976


 English version:
Mathematics of the USSR-Izvestiya, 1977, 11:4, 709–723

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026