RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. Akad. Nauk SSSR Ser. Mat., 1980 Volume 44, Issue 4, Pages 821–830 (Mi im1853)

This article is cited in 2 papers

Reflexivity and best approximations in Fréchet spaces

D. N. Zarnadze


Abstract: The paper gives a negative answer to the following question of M. Wriedt: Is it true that in every projective limit of reflexive Banach spaces there exists a normlike metric for which all closed hyperplanes are proximinal?
In particular, it is shown that if $E[\mathfrak T]$ is a nuclear Fréchet space nonisomorphic to the space of all sequences $\omega$, then for an arbitrary normlike metric $d$ on $E$ inducing the topology $\mathfrak T$, there exist nonproximinal closed hyperplanes.
Bibliography: 14 titles.

UDC: 513.88

MSC: 46A06, 46A25, 41A50, 41A65

Received: 11.03.1979


 English version:
Mathematics of the USSR-Izvestiya, 1981, 17:1, 87–94

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026