RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. Akad. Nauk SSSR Ser. Mat., 1978 Volume 42, Issue 4, Pages 773–788 (Mi im1845)

This article is cited in 6 papers

Various widths of the class $H_p^r$ in the space $L_q$

V. E. Maiorov


Abstract: A method of reducing the computation of $n$-widths of compact sets of functions to the analogous problem for finite-dimensional compact sets is presented. Using this method the author obtains best possible (in the “power scale”) estimates for Kolmogorov, Aleksandrov and entropy $n$-widths of the class $H_p^r$ of functions $f(x)$, $x\in R^S$, that are $2\pi$-periodic in each variable, satisfy the inequality
$$ \biggl\|\frac{\partial^{rs}}{\partial x_1^r\cdots\partial x_s^r}\biggr\|_{L_p}\leqslant1 $$
and have the property that any Fourier coefficients with at least one zero index must be equal to zero.
Bibliography: 21 titles.

UDC: 517.5

MSC: Primary 41A46; Secondary 46E30

Received: 12.03.1976


 English version:
Mathematics of the USSR-Izvestiya, 1979, 13:1, 73–87

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026