RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. Akad. Nauk SSSR Ser. Mat., 1977 Volume 41, Issue 3, Pages 607–619 (Mi im1826)

Distribution of the eigenvalues of the Sturm–Liouville operator equation

V. A. Mikhailets


Abstract: This work contains an analysis of the dependence of the lower terms of the asymptotics of the distribution of the eigenvalues of the equation $-y''+Ay=\lambda y$ upon the spectrum of the positive selfadjoint operator $A$ and the form of the boundary conditions. As a corollary the second term is found for the spectral asymptotics of classical boundary value problems for the Laplace equation in three-dimensional cylindrical domains.
Bibliography: 20 titles.

UDC: 517.9

MSC: Primary 34B25, 34G05, 47A50; Secondary 47B25, 35A15, 35J05

Received: 06.05.1976


 English version:
Mathematics of the USSR-Izvestiya, 1977, 11:3, 571–582

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026