RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. Akad. Nauk SSSR Ser. Mat., 1977 Volume 41, Issue 2, Pages 416–437 (Mi im1816)

A boundary value problem for a quasilinear equation of first order with arbitrary dependence of the direction of the characteristics at the boundary on the unknown function

É. B. Bykhovskii


Abstract: A boundary value problem for the equation
$$ \frac d{dx_k}a_k(x,u)+b(x,u)+cu=0 $$
is posed and investigated in a domain $\Omega\subset\mathbf R^n$ with boundary $S$. Let $a_\nu$ be the normal component on $S$ of the vector $\vec a=(a_1,\dots,a_n)$. In contrast to previous papers, an arbitrary dependence of $a_\nu(x,u)$ on $u$ is permitted.
Bibliography: 7 titles.

UDC: 517.994

MSC: 35F30

Received: 24.06.1975


 English version:
Mathematics of the USSR-Izvestiya, 1977, 11:2, 397–416

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026