RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. Akad. Nauk SSSR Ser. Mat., 1977 Volume 41, Issue 2, Pages 352–369 (Mi im1807)

In the structure of exceptional sets of entire curves

V. P. Petrenko


Abstract: Let $\vec G(z)=\{g_1(z),\dots,g_p(z)\}$ be a $p$-dimensional entire curve, $D(\vec G)=\{\vec a:\delta(\vec a,\vec G)>0\}$, $V(\vec G)=\{\vec a:\Delta(\vec a,\vec G)>0\}$ and $\Omega(\vec G)=\{\vec a:\beta(\vec a,\vec G)>0\}$ its sets of deficient values and set of positive deviations. This paper is devoted to an investigation of the structure of $D(\vec G)$, $V(\vec G)$ and $\Omega(\vec G)$ without any supplementary assumption that the vectors belong to a fixed admissible system. The main result shows that these sets are exceptional in a certain sense.
Bibliography: 11 titles.

UDC: 517.53

MSC: Primary 30A70; Secondary 30A66, 30A96

Received: 21.08.1975


 English version:
Mathematics of the USSR-Izvestiya, 1977, 11:2, 335–352

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026