RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. Akad. Nauk SSSR Ser. Mat., 1977 Volume 41, Issue 1, Pages 54–103 (Mi im1793)

This article is cited in 24 papers

Automorphisms of affine surfaces. II

M. Kh. Gizatullin, V. I. Danilov


Abstract: Affine surfaces $X$ completed by an irreducible rational curve $C$ are studied. The integer $m=(C^2)$ is an invariant of $X$. It is shown that the set of all such surfaces with fixed invariant $m$ is described in terms of orbits of a group action on the space of “tails”; moreover, the automorphism group $\operatorname{Aut}(X)$ is expressed by the stabilizers of the action. Explicit formulas for generators of the group $\operatorname{Aut}(X)$ are given for $m\leqslant5$. In particular, it is shown that in zero characteristic the invariant $m$ uniquely determines the surface $X$; in the general case this is not so.
Bibliography: 11 titles.

UDC: 513.6

MSC: Primary 14E05; Secondary 14J25

Received: 17.03.1976


 English version:
Mathematics of the USSR-Izvestiya, 1977, 11:1, 51–98

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026