RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. Akad. Nauk SSSR Ser. Mat., 1979 Volume 43, Issue 6, Pages 1203–1226 (Mi im1753)

This article is cited in 32 papers

Sequential discrimination of hypotheses with control of observations

M. V. Burnashev


Abstract: The problem of sequential discrimination of $N$ hypotheses $\{\theta_i\}$ is considered, using a family of measures $\mathscr F=\{F_\alpha\}$, $\alpha\in\mathfrak A$, defined on a measurable space $(X,\mathscr B)$. For observation at a particular instant of the time sequence one of the measures in $\mathscr F$ is assigned to each hypothesis $\theta_i$, and it is decided to use the results of the preceding observations.
For given error probability $\mathbf P_e=\mathbf P(\hat\theta\ne\theta_\text{true})$ in making a decision the author studies the smallest possible average number $\mathbf E\tau$ of observations (in the Bayesian or minimax formulation). Asymptotically optimal results (as $\mathbf P_e\to0$, $N\to\infty$) are obtained for a rather large class of cases.
Bibliography: 12 titles.

UDC: 519.2

MSC: Primary 62L10, 62L05, 62C10; Secondary 62B10

Received: 21.02.1978


 English version:
Mathematics of the USSR-Izvestiya, 1980, 15:3, 419–440

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026