RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. Akad. Nauk SSSR Ser. Mat., 1981 Volume 45, Issue 6, Pages 1391–1423 (Mi im1717)

This article is cited in 1 paper

On the exceptional set for the sum of a prime and a perfect square

I. V. Polyakov


Abstract: A new theorem is obtained on the mean value of the number of representations of natural numbers $n$ as the sum of a prime and a perfect square, from which it is deduced that there are at most $Ne^{-a\sqrt{\log N}}$, $a>0$, natural numbers $n\leqslant N$ not representable as such a sum.
Bibliography: 17 titles.

UDC: 511.2

MSC: Primary 10J15; Secondary 10G10, 10H08, 10H32

Received: 28.05.1981


 English version:
Mathematics of the USSR-Izvestiya, 1982, 19:3, 611–641

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026