RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. Akad. Nauk SSSR Ser. Mat., 1981 Volume 45, Issue 6, Pages 1241–1257 (Mi im1713)

This article is cited in 7 papers

On integro-functional operators with a shift which is not one-to-one

Yu. D. Latushkin


Abstract: Functional and singular integro-functional operators with nonunivalent shift are considered. The spectrum of a weighted shift operator in the space $L_p(\Gamma)$, $1\leqslant p\leqslant\infty$, is studied in the case where the shift is an expanding nonunivalent mapping of a smooth finite-dimensional mapping of a manifold $\Gamma$. Necessary and sufficient conditions for the Fredholm property are obtained, as well as a formula for computing the index of a singular integral operator with nonunivalent expanding shift of the unit circle.
Bibliography: 17 titles.

UDC: 517.9

MSC: Primary 47A10, 47A53, 47G05; Secondary 45E99, 53C20, 54H20

Received: 10.10.1980


 English version:
Mathematics of the USSR-Izvestiya, 1982, 19:3, 479–493

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026