RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. Akad. Nauk SSSR Ser. Mat., 1978 Volume 42, Issue 2, Pages 226–236 (Mi im1711)

This article is cited in 13 papers

Projective metabelian groups and Lie algebras

V. A. Artamonov


Abstract: Suppose that $A_n$ is the variety of all abelian groups of exponent dividing $n\geqslant0$, and $A_n=A$ is the variety of all abelian groups. In this paper it is proved that projective metabelian $A_nA$-groups of finite rank are free. Moreover, it is proved that projective metabelian $k[Y_1^{\pm1},\dots,Y_r^{\pm1},Z_1,\dots,Z_s]$-Lie algebras of finite rank, where $k$ is a principal ideal ring, are free.
Bibliography: 9 titles.

UDC: 519.4

MSC: Primary 20E10, 20E15; Secondary 20E05, 17B30

Received: 01.09.1976


 English version:
Mathematics of the USSR-Izvestiya, 1978, 12:2, 213–223

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026