RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. Akad. Nauk SSSR Ser. Mat., 1982 Volume 46, Issue 6, Pages 1159–1174 (Mi im1701)

This article is cited in 21 papers

On Fano varieties of genus 6

N. P. Gushel'


Abstract: In this paper it is proved that any nonsingular Fano variety $V_{10}$ of genus $6$ in $\mathbf P^7$ with $\operatorname{Pic}V_{10}\simeq\mathbf ZK_V$ is either a section $V_{10}^3$ of the Grassmannian $G(1,4)$ of lines in $\mathbf P^4$ by two hyperplanes and a quadric under the Plücker embedding of $G(1,4)$ in $\mathbf P^9$ or is the intersection ${V_{10}^3}'$ of a quadric and a cone over a section of $G(1,4)$ by a subspace of codimension $3$.
Bibliography: 13 titles.

UDC: 513.6

MSC: 14J30

Received: 30.11.1981


 English version:
Mathematics of the USSR-Izvestiya, 1983, 21:3, 445–459

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026