RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. Akad. Nauk SSSR Ser. Mat., 1980 Volume 44, Issue 3, Pages 483–509 (Mi im1696)

This article is cited in 12 papers

Continuity of a multivalued mapping connected with the problem of minimizing a functional

V. I. Berdyshev


Abstract: Let $X$ and $U$ be locally convex spaces, $\varphi(x,u)$ a proper convex lower semicontinuous functional on $X\times U$ and $t=t(u)\geqslant\inf\{\varphi(x,u)\colon x\in X\}$. This paper gives conditions for the multivalued mapping
$$ \Phi_t\colon u\in U\to \Phi_t(u)=\{x\in X\colon\varphi(x,u)\leqslant t\} $$
to be uniformly continuous and satisfy a Lipschitz condition, and determines the relation of $\Phi_t$ with other multivalued mappings, in particular, with a metric projection. On the basis of the functional conjugate to $\varphi$ a mapping conjugate to $\Phi_t$ is introduced and a condition for its upper semicontinuity is presented. The problem of minimizing a homogeneous convex functional on a convex set is considered.
Bibliography: 21 titles.

UDC: 519.3.81

MSC: Primary 46A05, 46A20, 46A55; Secondary 49A27

Received: 10.04.1978


 English version:
Mathematics of the USSR-Izvestiya, 1981, 16:3, 431–456

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026