RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. Akad. Nauk SSSR Ser. Mat., 1980 Volume 44, Issue 2, Pages 415–442 (Mi im1672)

This article is cited in 13 papers

The geometry of the Fano surface of the double cover of $P^3$ branched in a quartic

A. S. Tikhomirov


Abstract: This paper gives a computation of the irregularity of the Fano surface $\mathscr F$ of lines on the double cover $X\to P^3$ branched in a quartic. A tangent bundle theorem is proved for $\mathscr F$, from which it follows that $\mathscr F$ determines $X$ uniquely. It is shown that the Abel–Jacobi map $a\colon\operatorname{Alb}(\mathscr F)\to J_3(X)$ is an isogeny.
Bibliography: 7 titles.

UDC: 512.776

MSC: 14J30

Received: 07.09.1979


 English version:
Mathematics of the USSR-Izvestiya, 1981, 16:2, 373–397

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026