RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. Akad. Nauk SSSR Ser. Mat., 1978 Volume 42, Issue 1, Pages 3–25 (Mi im1664)

This article is cited in 25 papers

Normal subgroups of free profinite groups

O. V. Mel'nikov


Abstract: We classify up to isomorphism the normal subgroups of free profinite groups and also of their analogues, the so-called free pro-$\Delta$-groups, which include free prosoluble groups and free pro-$\pi$-groups (where $\pi$ is a set of primes). We prove that if $N$ is a normal subgroup of a free ðãî-$\Delta$-group, then any proper normal subgroup of $N$ of finite index is a free ðrî-$\Delta$-group. We find a set of conditions that are comparatively easy to check, which guarantee the freeness of a normal subgroup of a free pro-$\Delta$-group. We discuss the question of when a normal subgroup of a free ðrî-$\Delta$-group is determined by the set of its finite homomorphic images.
Bibliography: 10 titles.

UDC: 519.46

MSC: Primary 20F20, 20E05; Secondary 20F15, 22C05

Received: 10.01.1977


 English version:
Mathematics of the USSR-Izvestiya, 1978, 12:1, 1–20

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026