RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. Akad. Nauk SSSR Ser. Mat., 1982 Volume 46, Issue 5, Pages 1062–1081 (Mi im1660)

This article is cited in 8 papers

Singularities of the theta divisor of the intermediate Jacobian of a double cover of $P^3$ of index two

A. S. Tikhomirov


Abstract: In this paper a theorem is proved on the singularities of the Poincaré theta divisor $\Theta$ of the intermediate Jacobian of a body $X$, a double cover of $P^3$ of index two: the codimension of $\Theta$ in $J_3(X)$ is two. Hence a) $X$ is not rational, b) $(J_3(X),\Theta)$ is not a Prym variety, and, as a consequence, c) $X$ has no structure of a bundle of conics.
Bibliography: 13 titles.

UDC: 513.6

MSC: 14K30

Received: 19.01.1982


 English version:
Mathematics of the USSR-Izvestiya, 1983, 21:2, 355–373

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026