RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. Akad. Nauk SSSR Ser. Mat., 1980 Volume 44, Issue 1, Pages 219–232 (Mi im1644)

A four-dimensional bundle of quadrics, and a monad

A. S. Tikhomirov


Abstract: In this paper the author constructs a regular mapping $f$ of the variety of moduli of stable two-dimensional vector bundles $\mathscr F$ on $P^3$ with Chern classes $c_1(\mathscr F)=0$ and $c_2(\mathscr F)=n$ which satisfy $h^1(P^3,\mathscr F(-2))=0$, into the variety of classes of four-dimensional bundles of quadrics (whose base is the Grassmannian $G(1,3)$) in $P^{n-1}$. He proves that $f$ is an embedding. For the proof he constructs a monad on $P^3$ for the class of $f(\mathscr F)$, such that the cohomology sheaf of the monad is isomorphic to the vector bundle $\mathscr F$.
Bibliography: 4 titles.

UDC: 513.6

MSC: Primary 14D20; Secondary 14M99

Received: 28.12.1978


 English version:
Mathematics of the USSR-Izvestiya, 1981, 16:1, 207–220

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026