RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. Akad. Nauk SSSR Ser. Mat., 1982 Volume 46, Issue 3, Pages 487–523 (Mi im1637)

This article is cited in 55 papers

Boundedly nonhomogeneous elliptic and parabolic equations

N. V. Krylov


Abstract: This paper considers elliptic equations of the form
\begin{equation*} 0=F(u_{x^ix^j},u_{x^i},u,1,x) \tag{</nomathmode><mathmode>$*$} \end{equation*}
</mathmode><nomathmode> and parabolic equations of the form
\begin{equation*} u_t=F(u_{x^ix^j},u_{x^i},u,1,t,x), \tag{</nomathmode><mathmode>$**$} \end{equation*}
</mathmode><nomathmode> where $F(u_{ij},u_i,u,\beta,x)$ and $F(u_{ij},u_i,u,\beta,t,x)$ are positive homogeneous functions of the first order of homogeneity with respect to $(u_{ij},u_i,u,\beta)$, convex upwards with respect $u_{ij}$ and satisfying a uniform condition of strict ellipticity. Under certain smoothness conditions on $F$ and boundedness from above of the second derivatives of $F$ with respect to $(u_{ij},u_i,u)$, solvability is established for these equations of a problem over the whole space, of the Dirichlet problem in a domain with a sufficiently regular boundary (for the equation ($*$)), and of the Cauchy problem and the first boundary value problem (for equation ($**$)). Solutions are sought in the classes $C^{2+\alpha}$, and their existence is proved with the aid of internal a priori estimates in $C^{2+\alpha}$.
Bibliography: 29 titles.

UDC: 517.9

MSC: 35A05, 35J15, 35K10

Received: 09.07.1981


 English version:
Mathematics of the USSR-Izvestiya, 1983, 20:3, 459–492

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026