RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 1997 Volume 61, Issue 5, Pages 99–136 (Mi im161)

This article is cited in 69 papers

The generalized joint spectral radius. A geometric approach

V. Yu. Protasov

M. V. Lomonosov Moscow State University

Abstract: The properties of the joint spectral radius with an arbitrary exponent $p\in[1,+\infty]$ are investigated for a set of finite-dimensional linear operators $A_1,\dots,A_k$
\begin{align*} \widehat\rho_p&=\lim_{n\to\infty}\biggl(\dfrac{1}{k^n}\,\sum_\sigma\|A_{\sigma (1)}\cdots A_{\sigma(n)}\|^p\biggr)^{\frac{1}{pn}},\quad p<\infty, \\ \widehat\rho_{\infty}&=\lim_{n\to\infty}\max_{\sigma}\|A_{\sigma(1)}\cdots A_{\sigma(n)}\|^{\frac{1}{n}}, \end{align*}
where the summation and maximum extend over all maps
$$ \sigma \colon\{1,\dots,n\}\to\{1,\dots,k\}. $$

Using the operation of generalized addition of convex sets, we extend the Dranishnikov–Konyagin theorem on invariant convex bodies, which has hitherto been established only for the case $p=\infty$. The paper concludes with some assertions on the properties of invariant bodies and their relationship to the spectral radius $\widehat \rho_p$. The problem of calculating $\widehat \rho_p$ for even integers $p$ is reduced to determining the usual spectral radius for an appropriate finite-dimensional operator. For other values of $p$, a geometric analogue of the method with a pre-assigned accuracy is constructed and its complexity is estimated.

MSC: 15A18, 90C60, 68Q25

Received: 28.05.1996

DOI: 10.4213/im161


 English version:
Izvestiya: Mathematics, 1997, 61:5, 995–1030

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026