RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. Akad. Nauk SSSR Ser. Mat., 1982 Volume 46, Issue 1, Pages 117–134 (Mi im1609)

This article is cited in 6 papers

The influence of height on degenerations of algebraic surfaces of type $K3$

A. N. Rudakov, T. Tsink, I. R. Shafarevich


Abstract: The authors announce the conjecture that a family of $K3$ surfaces the Artin height of whose generic fiber is greater than $2$ does not degenerate; they prove this conjecture for surfaces of degree $2$. As a corollary it is shown that a family of supersingular $K3$ surfaces does not degenerate; i.e., its variety of moduli is complete.
Bibliography: 18 titles.

UDC: 513.6

MSC: Primary 14J25; Secondary 14L05

Received: 03.08.1981


 English version:
Mathematics of the USSR-Izvestiya, 1983, 20:1, 119–135

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026