RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. Akad. Nauk SSSR Ser. Mat., 1982 Volume 46, Issue 1, Pages 36–55 (Mi im1604)

This article is cited in 7 papers

Mappings of free $\mathbf Z_p$-spaces into manifolds

A. Yu. Volovikov


Abstract: This paper considers generalizations of the Bourgin–Yang theorem. It is shown that if $f\colon X\to M$ is a continuous mapping of a paracompact free $\mathbf Z_p$-space $X$ into an $m$-dimensional manifold $M$, then, under the condition that $\operatorname{in}X\geqslant n>m(p-1)$ (where $\operatorname{in}X$ is the index in the sense of Yang) and $f^*V_i=0$ for $i\geqslant1$, where the $V_i$ are the Wu classes of $M$, the following inequality holds:
$$ \operatorname{in}\{x\in X\mid f(x)=f(gx)\ \forall g\in\mathbf Z_p\}\geqslant n-m(p-1). $$

Besides this result, certain “nonsymmetric” versions of the Borsuk–Ulam theorem are proved.
Bibliography: 16 titles.

UDC: 513.83

MSC: Primary 55M20; Secondary 55N25, 57S17

Received: 09.12.1980


 English version:
Mathematics of the USSR-Izvestiya, 1983, 20:1, 35–53

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026