RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. Akad. Nauk SSSR Ser. Mat., 1981 Volume 45, Issue 5, Pages 1121–1197 (Mi im1601)

This article is cited in 5 papers

The Fano surface of the Veronese double cone

A. S. Tikhomirov


Abstract: This article studies the Fano surface $\mathscr F$ of lines on the Veronese double cone $X$ branched in its intersection with a cubic in $P^6$; it is the last variety in the series of Fano 3-folds of index two. The irregularity of the surface $\mathscr F$ is computed, its Abel–Jacobi mapping $\Phi$ into the intermediate Jacobian of the body $X$ is constructed, the Gauss mapping for $\Phi(\mathscr F)$ is studied, and a theorem on uniquely recovering $X$ from $\Phi(\mathscr F)$ is proved.
Bibliography: 22 titles.

UDC: 513.6

MSC: 14J25

Received: 07.04.1981


 English version:
Mathematics of the USSR-Izvestiya, 1982, 19:2, 377–443

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026