RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. Akad. Nauk SSSR Ser. Mat., 1979 Volume 43, Issue 1, Pages 44–66 (Mi im1578)

This article is cited in 28 papers

Local description of closed ideals and submodules of analytic functions of one variable. I

I. F. Krasichkov-Ternovskii


Abstract: Let $P$ be a topological module (over the ring of polynomials) of vector-valued functions $f\colon G\to\mathbf C^q$, holomorphic in a domain $G\subset\mathbf C$.
A closed submodule $I\subset P$ is local (that is, uniquely determined by the collection $I_\lambda$, $\lambda\in G$, of its localized submodules) if and only if $I$ is stable and saturated. A submodule is said to be stable if it admits division by binomials: $f\in I$, $\frac f{z-\lambda}\in I_\lambda\Rightarrow\frac f{z-\lambda}\in I$.
Being saturated amounts to possessing sufficiently many elements.
Bibliography: 26 titles.

UDC: 517.5

MSC: 46J15, 46J20

Received: 20.12.1976


 English version:
Mathematics of the USSR-Izvestiya, 1980, 14:1, 41–60

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026