RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. Akad. Nauk SSSR Ser. Mat., 1986 Volume 50, Issue 3, Pages 566–597 (Mi im1501)

This article is cited in 13 papers

Homotopy formulas for the $\overline\partial$-operator on $\mathbf CP^n$ and the Radon–Penrose transform

P. L. Polyakov, G. M. Henkin


Abstract: Global integral representations are constructed for differential forms on domains in complex projective space $\mathbf CP^n$.
Consequences of these representations are the following: first, criteria for the solvability of the inhomogeneous Cauchy–Riemann equations on $q$-pseudoconvex and $q$-pseudoconcave domains in an algebraic manifold; second, explicit formulas and bounds for solutions of these equations; and third, a description of the kernel and image and an inversion formula for the Radon-Penrose transform of $(0,q)$-forms on $q$-linearly concave domains in $\mathbf CP^n$.
Bibliography: 23 titles.

UDC: 517.55+539.12

MSC: Primary 32A25; Secondary 35N15, 32F20

Received: 16.03.1984


 English version:
Mathematics of the USSR-Izvestiya, 1987, 28:3, 555–587

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026