RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. Akad. Nauk SSSR Ser. Mat., 1986 Volume 50, Issue 1, Pages 67–78 (Mi im1471)

This article is cited in 1 paper

The number of integers representable as a sum of two squares on small intervals

V. A. Plaksin


Abstract: Let $M(m,h)$ denote the number of natural numbers in the interval $(m;m+h)$ which are representable as a sum of two squares. Under the condition $n>\ln^{42,5+\varepsilon}X$, $\varepsilon>0$, a best possible lower bound for $M(m,h)$ is established for almost all $m\leqslant X$ (for all but $o(X)$).
Bibliography: 14 titles.

UDC: 511

MSC: Primary 11N25; Secondary 11E25, 11N35, 11N37

Received: 22.11.1984


 English version:
Mathematics of the USSR-Izvestiya, 1987, 28:1, 67–78

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026