RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. Akad. Nauk SSSR Ser. Mat., 1983 Volume 47, Issue 6, Pages 1303–1321 (Mi im1465)

This article is cited in 11 papers

Extensions of Lie algebras and Hamiltonian systems

V. V. Trofimov


Abstract: An extension $\Omega(G)$ is constructed for a Lie algebra $G$, and an algorithm is proposed which converts functions in involution on $G^*$ into functions in involution on $\Omega(G)^*$. Operators of “rigid body” type are constructed for $\Omega(G)$ in the case of a semisimple Lie algebra $G$; complete integrability is proved for the Euler equations on $\Omega(G)^*$ with these operators.
Bibliography: 21 titles.

UDC: 513.944

MSC: Primary 58F07; Secondary 17B99

Received: 16.02.1981


 English version:
Mathematics of the USSR-Izvestiya, 1984, 23:3, 561–578

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026