RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. Akad. Nauk SSSR Ser. Mat., 1984 Volume 48, Issue 3, Pages 614–630 (Mi im1459)

This article is cited in 5 papers

On equiconvergence of expansions in trigonometric Fourier series and in principal functions of ordinary differential operators

A. I. Vahabov


Abstract: A regularity concept is given for ordinary differential pencils of a general form in a space of vector-valued functions, and this concept is subjected to analysis. Theorems are established asserting that the Fourier series of an arbitrary vector-valued function in the system of eigenelements of the pencils is equiconvergent with the usual trigonometric Fourier series of the components of this vector-valued function.
Bibliography: 7 titles.

UDC: 517.9

MSC: Primary 34B25, 42A20; Secondary 42C15


 English version:
Mathematics of the USSR-Izvestiya, 1985, 24:3, 567–582

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026