RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. Akad. Nauk SSSR Ser. Mat., 1983 Volume 47, Issue 5, Pages 1078–1090 (Mi im1436)

This article is cited in 5 papers

Approximation in the mean of classes of differentiable functions by algebraic polynomials

V. A. Kofanov


Abstract: The exact values $E_n(W^r_L)_L$ are found for the best approximations in the mean of the function classes
$$W^r_L=\{f:f^{(r-1)}\text{ is absolutely continuous, }\|f^{(r)}\|_L\leqslant1\},\qquad r =2,3,\dots,$$
by algebraic polynomials of degree at most $n$ on the interval $[-1,1]$. It is proved that $E_n(W^r_L)_L$ coincides with the uniform norm of the perfect spline
$$ \frac1{r!}\biggl[(x+1)^r+2\sum^{n+1}_{i=1}(-1)^i(x-x_i)^r_+\biggr] $$
with nodes $x_i=-\cos\frac{i\pi}{n+2}$.
Bibliography: 6 titles.

UDC: 517.5

MSC: Primary 41A10, 41A15, 41A44; Secondary 41A50

Received: 07.12.1981


 English version:
Mathematics of the USSR-Izvestiya, 1984, 23:2, 353–365

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026