RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. Akad. Nauk SSSR Ser. Mat., 1983 Volume 47, Issue 2, Pages 298–314 (Mi im1390)

This article is cited in 2 papers

Finite local propagation rate of a hyperbolic equation in the problem of selfadjointness of powers of a second order elliptic differential operator

Yu. B. Orochko


Abstract: Let $S$ be a formally selfadjoint second order elliptic expression and $H$ the minimal nonclosed operator in $L_2(\mathbf R^m)$, $m\geqslant1$, generated by it. The property of finite local propagation rate of the hyperbolic equation $\frac{\partial^2u}{\partial t^2}+S[u]=0$ is applied to obtain new criteria for the essential selfadjointness of $H$ and its powers. In these criteria restrictions are imposed on the coefficients of $S$ along a sequence of nonintersecting solid layers diverging to infinity.
Bibliography: 17 titles.

UDC: 517.9

MSC: Primary 47F05, 47B25; Secondary 35L10

Received: 11.01.1982


 English version:
Mathematics of the USSR-Izvestiya, 1984, 22:2, 277–290

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026