RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. Akad. Nauk SSSR Ser. Mat., 1983 Volume 47, Issue 1, Pages 75–108 (Mi im1382)

This article is cited in 59 papers

Boundedly nonhomogeneous elliptic and parabolic equations in a domain

N. V. Krylov


Abstract: In this paper the Dirichlet problem is studied for equations of the form $0=F(u_{x^ix^j},u_{x^i},u,1,x)$ and also the first boundary value problem for equations of the form $u_t=F(u_{x^ix^j},u_{x^i},u,1,t,x)$, where $F(u_{ij},u_i,u,\beta,x)$ and $F(u_{ij},u_i,u,\beta,t,x)$ are positive homogeneous functions of the first degree in $(u_{ij},u_i,u,\beta)$, convex upwards in $(u_{ij})$, that satisfy a uniform strict ellipticity condition. Under certain smoothness conditions on $F$ and when the second derivatives of $F$ with respect to $(u_{ij},u_i,u,x)$ are bounded above, the $C^{2+\alpha}$ solvability of these problems in smooth domains is proved. In the course of the proof, a priori estimates in $C^{2+\alpha}$ on the boundary are constructed, and convexity and restrictions on the second derivatives of $F$ are not used in the derivation.
Bibliography: 13 titles.

UDC: 517.9

MSC: Primary 35A05, 35B45, 35J25, 35K20; Secondary 26B35, 35B65, 35J60, 35K55

Received: 30.11.1981


 English version:
Mathematics of the USSR-Izvestiya, 1984, 22:1, 67–97

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026